Boltzmann machines and energy-based models
نویسنده
چکیده
We review Boltzmann machines and energy-based models. A Boltzmann machine defines a probability distribution over binary-valued patterns. One can learn parameters of a Boltzmann machine via gradient based approaches in a way that log likelihood of data is increased. The gradient and Laplacian of a Boltzmann machine admit beautiful mathematical representations, although computing them is in general intractable. This intractability motivates approximate methods, including Gibbs sampler and contrastive divergence, and tractable alternatives, namely energy-based models.
منابع مشابه
Material for : Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style ∗ Graham
In this document, we provide additional details for variants of Conditional Restricted Boltzmann Machines (CRBMs). Specifically we focus on each of the four models compared in the Quantitative Evaluation (Sec. 4.4). We collect the formulae required for contrastive divergence learning of parameters, synthesis from a trained model by alternating Gibbs samping, and forward prediction from a traine...
متن کاملActor-Critic Reinforcement Learning with Energy-Based Policies
We consider reinforcement learning in Markov decision processes with high dimensional state and action spaces. We parametrize policies using energy-based models (particularly restricted Boltzmann machines), and train them using policy gradient learning. Our approach builds upon Sallans and Hinton (2004), who parameterized value functions using energy-based models, trained using a non-linear var...
متن کاملTraining Restricted Boltzmann Machines with Overlapping Partitions
Restricted Boltzmann Machines (RBM) are energy-based models that are successfully used as generative learning models as well as crucial components of Deep Belief Networks (DBN). The most successful training method to date for RBMs is the Contrastive Divergence method. However, Contrastive Divergence is inefficient when the number of features is very high and the mixing rate of the Gibbs chain i...
متن کاملContinuous space language models using restricted Boltzmann machines
We present a novel approach for continuous space language models in statistical machine translation by using Restricted Boltzmann Machines (RBMs). The probability of an n-gram is calculated by the free energy of the RBM instead of a feedforward neural net. Therefore, the calculation is much faster and can be integrated into the translation process instead of using the language model only in a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.06008 شماره
صفحات -
تاریخ انتشار 2017